LEGO: A Lightweight and Efficient Multiple-Attribute Unlearning Framework for Recommender Systems

arXiv:2510.20327v1 Announce Type: cross
Abstract: With the growing demand for safeguarding sensitive user information in recommender systems, recommendation attribute unlearning is receiving increasing attention. Existing studies predominantly focus on single-attribute unlearning. However, privacy protection requirements in the real world often involve multiple sensitive attributes and are dynamic. Existing single-attribute unlearning methods cannot meet these real-world requirements due to i) CH1: the inability to handle multiple unlearning requests simultaneously, and ii) CH2: the lack of efficient adaptability to dynamic unlearning needs. To address these challenges, we propose LEGO, a lightweight and efficient multiple-attribute unlearning framework. Specifically, we divide the multiple-attribute unlearning process into two steps: i) Embedding Calibration removes information related to a specific attribute from user embedding, and ii) Flexible Combination combines these embeddings into a single embedding, protecting all sensitive attributes. We frame the unlearning process as a mutual information minimization problem, providing LEGO a theoretical guarantee of simultaneous unlearning, thereby addressing CH1. With the two-step framework, where Embedding Calibration can be performed in parallel and Flexible Combination is flexible and efficient, we address CH2. Extensive experiments on three real-world datasets across three representative recommendation models demonstrate the effectiveness and efficiency of our proposed framework. Our code and appendix are available at https://github.com/anonymifish/lego-rec-multiple-attribute-unlearning.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844