LLM-AR: LLM-powered Automated Reasoning Framework

arXiv:2510.22034v1 Announce Type: new
Abstract: Large language models (LLMs) can already identify patterns and reason effectively, yet their variable accuracy hampers adoption in high-stakes decision-making applications. In this paper, we study this issue from a venture capital perspective by predicting idea-stage startup success based on founder traits. (i) To build a reliable prediction model, we introduce LLM-AR, a pipeline inspired by neural-symbolic systems that distils LLM-generated heuristics into probabilistic rules executed by the ProbLog automated-reasoning engine. (ii) An iterative policy-evolution loop incorporates association-rule mining to progressively refine the prediction rules.
On unseen folds, LLM-AR achieves 59.5% precision and 8.7% recall, 5.9x the random baseline precision, while exposing every decision path for human inspection. The framework is interpretable and tunable via hyperparameters, showing promise to extend into other domains.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844