arXiv:2509.00961v2 Announce Type: replace
Abstract: Ultra Strong Machine Learning (USML) refers to symbolic learning systems that not only improve their own performance but can also teach their acquired knowledge to quantifiably improve human performance. We introduce LENS (Logic Programming Explanation via Neural Summarisation), a neuro-symbolic framework that combines symbolic program synthesis with large language models (LLMs). This framework automatically generates natural language explanations of learned logic programs, replacing hand-crafted templates used in prior USML work. Using LLMs-as-judges evaluation and expert validation, we show that LENS produces higher-quality explanations than both direct LLM prompting and hand-crafted templates. We then examine whether LENS explanations suffice for achieving USML in a human trial teaching active learning strategies across three related domains. Our exploratory analysis suggests that concise, expert-written explanations may benefit learners with higher initial performance, while LLM-generated explanations provide no advantage over human self learning despite being rated as higher quality. This case study reveals that achieving USML requires methods grounded in human learning, where current LLM-generated explanations do not capture human cognitive constraints and LLMs-as-judges evaluations do not reflect what effectively supports human learning.
FIT: Defying Catastrophic Forgetting in Continual LLM Unlearning
arXiv:2601.21682v1 Announce Type: cross Abstract: Large language models (LLMs) demonstrate impressive capabilities across diverse tasks but raise concerns about privacy, copyright, and harmful materials. Existing


