arXiv:2511.00361v1 Announce Type: cross
Abstract: High-quality data scarcity hinders malware detection, limiting ML performance. We introduce MalDataGen, an open-source modular framework for generating high-fidelity synthetic tabular data using modular deep learning models (e.g., WGAN-GP, VQ-VAE). Evaluated via dual validation (TR-TS/TS-TR), seven classifiers, and utility metrics, MalDataGen outperforms benchmarks like SDV while preserving data utility. Its flexible design enables seamless integration into detection pipelines, offering a practical solution for cybersecurity applications.
The Hidden Power of Normalization: Exponential Capacity Control in Deep Neural Networks
arXiv:2511.00958v1 Announce Type: cross Abstract: Normalization methods are fundamental components of modern deep neural networks (DNNs). Empirically, they are known to stabilize optimization dynamics and

