Matrix Sensing with Kernel Optimal Loss: Robustness and Optimization Landscape

arXiv:2511.02122v1 Announce Type: cross
Abstract: In this paper we study how the choice of loss functions of non-convex optimization problems affects their robustness and optimization landscape, through the study of noisy matrix sensing. In traditional regression tasks, mean squared error (MSE) loss is a common choice, but it can be unreliable for non-Gaussian or heavy-tailed noise. To address this issue, we adopt a robust loss based on nonparametric regression, which uses a kernel-based estimate of the residual density and maximizes the estimated log-likelihood. This robust formulation coincides with the MSE loss under Gaussian errors but remains stable under more general settings. We further examine how this robust loss reshapes the optimization landscape by analyzing the upper-bound of restricted isometry property (RIP) constants for spurious local minima to disappear. Through theoretical and empirical analysis, we show that this new loss excels at handling large noise and remains robust across diverse noise distributions. This work offers initial insights into enhancing the robustness of machine learning tasks through simply changing the loss, guided by an intuitive and broadly applicable analytical framework.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844