No-Human in the Loop: Agentic Evaluation at Scale for Recommendation

arXiv:2511.03051v1 Announce Type: new
Abstract: Evaluating large language models (LLMs) as judges is increasingly critical for building scalable and trustworthy evaluation pipelines. We present ScalingEval, a large-scale benchmarking study that systematically compares 36 LLMs, including GPT, Gemini, Claude, and Llama, across multiple product categories using a consensus-driven evaluation protocol. Our multi-agent framework aggregates pattern audits and issue codes into ground-truth labels via scalable majority voting, enabling reproducible comparison of LLM evaluators without human annotation. Applied to large-scale complementary-item recommendation, the benchmark reports four key findings: (i) Anthropic Claude 3.5 Sonnet achieves the highest decision confidence; (ii) Gemini 1.5 Pro offers the best overall performance across categories; (iii) GPT-4o provides the most favorable latency-accuracy-cost tradeoff; and (iv) GPT-OSS 20B leads among open-source models. Category-level analysis shows strong consensus in structured domains (Electronics, Sports) but persistent disagreement in lifestyle categories (Clothing, Food). These results establish ScalingEval as a reproducible benchmark and evaluation protocol for LLMs as judges, with actionable guidance on scaling, reliability, and model family tradeoffs.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844