Observer-Aware Probabilistic Planning Under Partial Observability

arXiv:2502.10568v2 Announce Type: replace
Abstract: In this article, we are interested in planning problems where the agent is aware of the presence of an observer, and where this observer is in a partial observability situation. The agent has to choose its strategy so as to optimize the information transmitted by observations. Building on observer-aware Markov decision processes (OAMDPs), we propose a framework to handle this type of problems and thus formalize properties such as legibility, explicability and predictability. This extension of OAMDPs to partial observability can not only handle more realistic problems, but also permits considering dynamic hidden variables of interest. These dynamic target variables allow, for instance, working with predictability, or with legibility problems where the goal might change during execution. We discuss theoretical properties of PO-OAMDPs and, experimenting with benchmark problems, we analyze HSVI’s convergence behavior with dedicated initializations and study the resulting strategies.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844