arXiv:2509.25214v2 Announce Type: replace-cross
Abstract: As increasingly large pre-trained models are released, deploying them on edge devices for privacy-preserving applications requires effective compression. Recent works combine quantization with the fine-tuning of high-precision LoRA adapters, which can substantially reduce model size while mitigating the accuracy loss from quantization. However, edge devices have inherently heterogeneous capabilities, while performing configuration-wise fine-tuning for every quantization setting is computationally prohibitive. In this paper, we propose CoA-LoRA, a method that dynamically adjusts the LoRA adapter to arbitrary quantization configurations (i.e., the per-layer bit-width choices of a pre-trained model) without requiring repeated fine-tuning. This is accomplished via a configuration-aware model that maps each configuration to its low-rank adjustments. The effectiveness of this model critically depends on the training configuration set, a collection of configurations chosen to cover different total bit-width budgets. However, constructing a high-quality configuration set is non-trivial. We therefore design a Pareto-based configuration search that iteratively optimizes the training configuration set, yielding more precise low-rank adjustments. Our experiments demonstrate that, unlike the state-of-the-art methods that require fine-tuning a separate LoRA adapter for each configuration, CoA-LoRA incurs no additional time cost while achieving comparable or even superior performance to those methods.
Inside the marketplace powering bespoke AI deepfakes of real women
Civitai—an online marketplace for buying and selling AI-generated content, backed by the venture capital firm Andreessen Horowitz—is letting users buy custom instruction files for generating

