FeNN-DMA: A RISC-V SoC for SNN acceleration

arXiv:2511.00732v1 Announce Type: cross Abstract: Spiking Neural Networks (SNNs) are a promising, energy-efficient alternative to standard Artificial Neural Networks (ANNs) and are particularly well-suited to

Optimizing the Unknown: Black Box Bayesian Optimization with Energy-Based Model and Reinforcement Learning

arXiv:2510.19530v1 Announce Type: cross
Abstract: Existing Bayesian Optimization (BO) methods typically balance exploration and exploitation to optimize costly objective functions. However, these methods often suffer from a significant one-step bias, which may lead to convergence towards local optima and poor performance in complex or high-dimensional tasks. Recently, Black-Box Optimization (BBO) has achieved success across various scientific and engineering domains, particularly when function evaluations are costly and gradients are unavailable. Motivated by this, we propose the Reinforced Energy-Based Model for Bayesian Optimization (REBMBO), which integrates Gaussian Processes (GP) for local guidance with an Energy-Based Model (EBM) to capture global structural information. Notably, we define each Bayesian Optimization iteration as a Markov Decision Process (MDP) and use Proximal Policy Optimization (PPO) for adaptive multi-step lookahead, dynamically adjusting the depth and direction of exploration to effectively overcome the limitations of traditional BO methods. We conduct extensive experiments on synthetic and real-world benchmarks, confirming the superior performance of REBMBO. Additional analyses across various GP configurations further highlight its adaptability and robustness.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844