Pediatric Appendicitis Detection from Ultrasound Images

arXiv:2511.04069v1 Announce Type: cross
Abstract: Pediatric appendicitis remains one of the most common causes of acute abdominal pain in children, and its diagnosis continues to challenge clinicians due to overlapping symptoms and variable imaging quality. This study aims to develop and evaluate a deep learning model based on a pretrained ResNet architecture for automated detection of appendicitis from ultrasound images. We used the Regensburg Pediatric Appendicitis Dataset, which includes ultrasound scans, laboratory data, and clinical scores from pediatric patients admitted with abdominal pain to Children Hospital. Hedwig in Regensburg, Germany. Each subject had 1 to 15 ultrasound views covering the right lower quadrant, appendix, lymph nodes, and related structures. For the image based classification task, ResNet was fine tuned to distinguish appendicitis from non-appendicitis cases. Images were preprocessed by normalization, resizing, and augmentation to enhance generalization. The proposed ResNet model achieved an overall accuracy of 93.44, precision of 91.53, and recall of 89.8, demonstrating strong performance in identifying appendicitis across heterogeneous ultrasound views. The model effectively learned discriminative spatial features, overcoming challenges posed by low contrast, speckle noise, and anatomical variability in pediatric imaging.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844