PMMD: A pose-guided multi-view multi-modal diffusion for person generation

arXiv:2512.15069v1 Announce Type: cross
Abstract: Generating consistent human images with controllable pose and appearance is essential for applications in virtual try on, image editing, and digital human creation. Current methods often suffer from occlusions, garment style drift, and pose misalignment. We propose Pose-guided Multi-view Multimodal Diffusion (PMMD), a diffusion framework that synthesizes photorealistic person images conditioned on multi-view references, pose maps, and text prompts. A multimodal encoder jointly models visual views, pose features, and semantic descriptions, which reduces cross modal discrepancy and improves identity fidelity. We further design a ResCVA module to enhance local detail while preserving global structure, and a cross modal fusion module that integrates image semantics with text throughout the denoising pipeline. Experiments on the DeepFashion MultiModal dataset show that PMMD outperforms representative baselines in consistency, detail preservation, and controllability. Project page and code are available at https://github.com/ZANMANGLOOPYE/PMMD.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844