arXiv:2502.08792v3 Announce Type: replace-cross
Abstract: We study auction design when a seller relies on machine-learning predictions of bidders’ valuations that may be unreliable. Motivated by modern ML systems that are often accurate but occasionally fail in a way that is essentially uninformative, we model predictions as randomly wrong: with high probability the signal equals the bidder’s true value, and otherwise it is a hallucination independent of the value. We analyze revenue-maximizing auctions when the seller publicly reveals these signals. A central difficulty is that the resulting posterior belief combines a continuous distribution with a point mass at the signal, so standard Myerson techniques do not directly apply. We provide a tractable characterization of the optimal signal-revealing auction by providing a closed-form characterization of the appropriate ironed virtual values. This characterization yields simple and intuitive implications. With a single bidder, the optimal mechanism reduces to a posted-price policy with a small number of regimes: the seller ignores low signals, follows intermediate signals, caps moderately high signals, and may again follow very high signals. With multiple bidders, we show that a simple eager second-price auction with signal-dependent reserve prices performs nearly optimally in numerical experiments and substantially outperforms natural benchmarks that either ignore the signal or treat it as fully reliable.
DHS is using Google and Adobe AI to make videos
The US Department of Homeland Security is using AI video generators from Google and Adobe to make and edit content shared with the public, a



