arXiv:2511.16943v1 Announce Type: cross
Abstract: Generative recommendation systems typically leverage Semantic Identifiers (SIDs), which represent each item as a sequence of tokens that encode semantic information. However, representing item ID with multiple SIDs significantly increases input sequence length, which is a major determinant of computational complexity and memory consumption. While existing efforts primarily focus on optimizing attention computation and KV cache, we propose RASTP (Representation-Aware Semantic Token Pruning), which directly prunes less informative tokens in the input sequence. Specifically, RASTP evaluates token importance by combining semantic saliency, measured via representation magnitude, and attention centrality, derived from cumulative attention weights. Since RASTP dynamically prunes low-information or irrelevant semantic tokens, experiments on three real-world Amazon datasets show that RASTP reduces training time by 26.7%, while maintaining or slightly improving recommendation performance. The code has been open-sourced at https://github.com/Yuzt-zju/RASTP.
Conditional Morphogenesis: Emergent Generation of Structural Digits via Neural Cellular Automata
arXiv:2512.08360v1 Announce Type: cross Abstract: Biological systems exhibit remarkable morphogenetic plasticity, where a single genome can encode various specialized cellular structures triggered by local chemical


