arXiv:2511.02130v1 Announce Type: new
Abstract: We propose Re-FORC, an adaptive reward prediction method that, given a context, enables prediction of the expected future rewards as a function of the number of future thinking tokens. Re-FORC trains a lightweight adapter on reasoning models, demonstrating improved prediction with longer reasoning and larger models. Re-FORC enables: 1) early stopping of unpromising reasoning chains, reducing compute by 26% while maintaining accuracy, 2) optimized model and thinking length selection that achieves 4% higher accuracy at equal compute and 55% less compute at equal accuracy compared to the largest model, 3) adaptive test-time scaling, which increases accuracy by 11% in high compute regime, and 7% in low compute regime. Re-FORC allows dynamic reasoning with length control via cost-per-token thresholds while estimating computation time upfront.
Cloning isn’t just for celebrity pets like Tom Brady’s dog
This week, we heard that Tom Brady had his dog cloned. The former quarterback revealed that his Junie is actually a clone of Lua, a


