Reinforcement Learning Position Control of a Quadrotor Using Soft Actor-Critic (SAC)

arXiv:2512.18333v1 Announce Type: cross
Abstract: This paper proposes a new Reinforcement Learning (RL) based control architecture for quadrotors. With the literature focusing on controlling the four rotors’ RPMs directly, this paper aims to control the quadrotor’s thrust vector. The RL agent computes the percentage of overall thrust along the quadrotor’s z-axis along with the desired Roll ($phi$) and Pitch ($theta$) angles. The agent then sends the calculated control signals along with the current quadrotor’s Yaw angle ($psi$) to an attitude PID controller. The PID controller then maps the control signals to motor RPMs. The Soft Actor-Critic algorithm, a model-free off-policy stochastic RL algorithm, was used to train the RL agents. Training results show the faster training time of the proposed thrust vector controller in comparison to the conventional RPM controllers. Simulation results show smoother and more accurate path-following for the proposed thrust vector controller.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844