arXiv:2510.26024v1 Announce Type: cross
Abstract: Cross-lingual alignment (CLA) aims to align multilingual representations, enabling Large Language Models (LLMs) to seamlessly transfer knowledge across languages. While intuitive, we hypothesize, this pursuit of representational convergence can inadvertently cause “cultural erasure”, the functional loss of providing culturally-situated responses that should diverge based on the query language. In this work, we systematically analyze this trade-off by introducing a holistic evaluation framework, the transfer-localization plane, which quantifies both desirable knowledge transfer and undesirable cultural erasure. Using this framework, we re-evaluate recent CLA approaches and find that they consistently improve factual transfer at the direct cost of cultural localization across all six languages studied. Our investigation into the internal representations of these models reveals a key insight: universal factual transfer and culturally-specific knowledge are optimally steerable at different model layers. Based on this finding, we propose Surgical Steering, a novel inference-time method that disentangles these two objectives. By applying targeted activation steering to distinct layers, our approach achieves a better balance between the two competing dimensions, effectively overcoming the limitations of current alignment techniques.
Fast Approximation Algorithm for Non-Monotone DR-submodular Maximization under Size Constraint
arXiv:2511.02254v1 Announce Type: cross Abstract: This work studies the non-monotone DR-submodular Maximization over a ground set of $n$ subject to a size constraint $k$. We

