arXiv:2511.02241v1 Announce Type: cross
Abstract: Traditional neural networks, while powerful, rely on biologically implausible learning mechanisms such as global backpropagation. This paper introduces the Structurally Adaptive Predictive Inference Network (SAPIN), a novel computational model inspired by the principles of active inference and the morphological plasticity observed in biological neural cultures. SAPIN operates on a 2D grid where processing units, or cells, learn by minimizing local prediction errors. The model features two primary, concurrent learning mechanisms: a local, Hebbian-like synaptic plasticity rule based on the temporal difference between a cell’s actual activation and its learned expectation, and a structural plasticity mechanism where cells physically migrate across the grid to optimize their information-receptive fields. This dual approach allows the network to learn both how to process information (synaptic weights) and also where to position its computational resources (network topology). We validated the SAPIN model on the classic Cart Pole reinforcement learning benchmark. Our results demonstrate that the architecture can successfully solve the CartPole task, achieving robust performance. The network’s intrinsic drive to minimize prediction error and maintain homeostasis was sufficient to discover a stable balancing policy. We also found that while continual learning led to instability, locking the network’s parameters after achieving success resulted in a stable policy. When evaluated for 100 episodes post-locking (repeated over 100 successful agents), the locked networks maintained an average 82% success rate.
Cloning isn’t just for celebrity pets like Tom Brady’s dog
This week, we heard that Tom Brady had his dog cloned. The former quarterback revealed that his Junie is actually a clone of Lua, a

