FeNN-DMA: A RISC-V SoC for SNN acceleration

arXiv:2511.00732v1 Announce Type: cross Abstract: Spiking Neural Networks (SNNs) are a promising, energy-efficient alternative to standard Artificial Neural Networks (ANNs) and are particularly well-suited to

Symbolically Scaffolded Play: Designing Role-Sensitive Prompts for Generative NPC Dialogue

arXiv:2510.25820v1 Announce Type: new
Abstract: Large Language Models (LLMs) promise to transform interactive games by enabling non-player characters (NPCs) to sustain unscripted dialogue. Yet it remains unclear whether constrained prompts actually improve player experience. We investigate this question through The Interview, a voice-based detective game powered by GPT-4o. A within-subjects usability study ($N=10$) compared high-constraint (HCP) and low-constraint (LCP) prompts, revealing no reliable experiential differences beyond sensitivity to technical breakdowns. Guided by these findings, we redesigned the HCP into a hybrid JSON+RAG scaffold and conducted a synthetic evaluation with an LLM judge, positioned as an early-stage complement to usability testing. Results uncovered a novel pattern: scaffolding effects were role-dependent: the Interviewer (quest-giver NPC) gained stability, while suspect NPCs lost improvisational believability. These findings overturn the assumption that tighter constraints inherently enhance play. Extending fuzzy-symbolic scaffolding, we introduce textitSymbolically Scaffolded Play, a framework in which symbolic structures are expressed as fuzzy, numerical boundaries that stabilize coherence where needed while preserving improvisation where surprise sustains engagement.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844