arXiv:2510.20846v1 Announce Type: new
Abstract: The presence of interictal epileptiform discharges (IEDs) in electroencephalogram (EEG) recordings is a critical biomarker of epilepsy. Even trained neurologists find detecting IEDs difficult, leading many practitioners to turn to machine learning for help. While existing machine learning algorithms can achieve strong accuracy on this task, most models are uninterpretable and cannot justify their conclusions. Absent the ability to understand model reasoning, doctors cannot leverage their expertise to identify incorrect model predictions and intervene accordingly. To improve the human-model interaction, we introduce ProtoEEG-kNN, an inherently interpretable model that follows a simple case-based reasoning process. ProtoEEG-kNN reasons by comparing an EEG to similar EEGs from the training set and visually demonstrates its reasoning both in terms of IED morphology (shape) and spatial distribution (location). We show that ProtoEEG-kNN can achieve state-of-the-art accuracy in IED detection while providing explanations that experts prefer over existing approaches.
The Hidden Power of Normalization: Exponential Capacity Control in Deep Neural Networks
arXiv:2511.00958v1 Announce Type: cross Abstract: Normalization methods are fundamental components of modern deep neural networks (DNNs). Empirically, they are known to stabilize optimization dynamics and


