• Home
  • AI/ML & Advanced Analytics
  • Topography, climate, land cover, and biodiversity: Explaining endemic richness and management implications on a Mediterranean island

Topography, climate, land cover, and biodiversity: Explaining endemic richness and management implications on a Mediterranean island

arXiv:2511.03242v1 Announce Type: new
Abstract: Island endemism is shaped by complex interactions among environmental, ecological, and evolutionary factors, yet the relative contributions of topography, climate, and land cover remain incompletely quantified. We investigated the drivers of endemic plant richness across Crete, a Mediterranean biodiversity hotspot, using spatially explicit data on species distributions, topographic complexity, climatic variability, land cover, and soil characteristics. Artificial Neural Network models, a machine learning tool, were employed to assess the relative importance of these predictors and to identify hotspots of endemism. We found that total species richness, elevation range, and climatic variability were the strongest predictors of endemic richness, reflecting the role of biodiversity, topographic heterogeneity, and climatic gradients in generating diverse habitats and micro-refugia that promote speciation and buffer extinction risk. Endemic hotspots only partially overlapped with areas of high total species richness, indicating that total species richness was the optimal from the ones examined, yet an imperfect surrogate. These environmentally heterogeneous areas also provide critical ecosystem services, including soil stabilization, pollination, and cultural value, which are increasingly threatened by tourism, renewable energy development, land-use change, and climate impacts. Our findings underscore the importance of prioritizing mountainous and climatically variable regions in conservation planning, integrating ecosystem service considerations, and accounting for within-island spatial heterogeneity. By explicitly linking the environmental drivers of endemism to both biodiversity patterns and ecosystem function, this study provides a framework for evidence-based conservation planning in Crete and other Mediterranean islands with similar geological and biogeographic contexts.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844