arXiv:2511.16147v3 Announce Type: replace-cross
Abstract: Current Parameter-Efficient Fine-Tuning (PEFT) methods typically operate under an implicit assumption: Once a target module is selected, every token passing through it contributes equally to the downstream task and requires a parameter update. In this paper, we challenge this convention by revealing a pervasive token-level redundancy in the fine-tuning of large models (LMs). We propose TS-PEFT, a theoretical framework utilizing proximal optimization that acts as a dynamic probe to identify token-level redundancy during the fine-tuning process. Extensive experiments demonstrate that indiscriminately updating all tokens is not only computationally superfluous but often introduces optimization noise. Surprisingly, by discarding 30%-70% of token updates, TS-PEFT consistently matches or exceeds the performance of dense baselines such as LoRA, DoRA. Our in-depth analysis shows that the learned token-level sparsity is a superior indicator of module importance compared to traditional weight criteria, providing a novel data-driven perspective on the intrinsic adaptation mechanism of LMs.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844