arXiv:2505.19853v3 Announce Type: replace-cross
Abstract: Properly evaluating the ability of Video-Language Models (VLMs) to understand long videos remains a challenge. We propose a long-context video understanding benchmark, Causal2Needles, that assesses two crucial abilities insufficiently addressed by existing benchmarks: (1) extracting information from two separate locations (two needles) in a long video and understanding them jointly, and (2) modeling the world in terms of cause and effect in human behaviors. Causal2Needles evaluates these abilities using noncausal one-needle, causal one-needle, and causal two-needle questions. The most complex question type, causal two-needle questions, require extracting information from both the cause and effect events from a long video and the associated narration text. To prevent textual bias, we introduce two complementary question formats: locating the video clip containing the answer, and verbal description of a visual detail from that video clip. Our experiments reveal that models excelling on existing benchmarks struggle with causal 2-needle questions, and the model performance is negatively correlated with the distance between the two needles. These findings highlight critical limitations in current VLMs. The dataset is available at: https://huggingface.co/datasets/causal2needles/Causal2Needles
OptoLoop: An optogenetic tool to probe the functional role of genome organization
The genome folds inside the cell nucleus into hierarchical architectural features, such as chromatin loops and domains. If and how this genome organization influences the
