FeNN-DMA: A RISC-V SoC for SNN acceleration

arXiv:2511.00732v1 Announce Type: cross Abstract: Spiking Neural Networks (SNNs) are a promising, energy-efficient alternative to standard Artificial Neural Networks (ANNs) and are particularly well-suited to

Uncertainty Quantification of Central Canal Stenosis Deep Learning Classifier from Lumbar Sagittal T2-Weighted MRI

Background: Accurate assessment of the severity of central canal stenosis (CCS) on lumbar spine MRI is critical for clinical decision-making. We evaluated deep learning models for automated CCS grading on sagittal T2-weighted MRI, focusing on uncertainty quantification to improve clinical reliability. Methods: Using a retrospective cohort from the LumbarDISC dataset (1,974 patients), we compared multiple deep learning architectures for three-level CCS classification (normal / mild, moderate, severe). To assess model confidence, Monte Carlo (MC) dropout and Test Time Augmentation (TTA) techniques were applied to quantify prediction uncertainty. Results: The fine-tuned Spinal Grading Network (SGN) achieved a balanced accuracy of 79.4% and a macro F1 score of 68.8%, with per-class accuracies of 71.3% for moderate and 78.5% for severe stenosis. MC dropout revealed an increase in uncertainty predominantly in moderate and severe cases, while TTA uncertainty was higher for mild stenosis. Conclusion: DL-based CCS grading demonstrates potential to assist radiologists by providing rapid, standardized evaluations. Incorporating uncertainty quantification offers a safeguard to flag ambiguous cases, thus supporting clinical trust and facilitating safer integration of AI tools into the interpretation of spine MRI.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844