arXiv:2511.10835v2 Announce Type: replace-cross
Abstract: Collective behavior pervades biological systems, from flocks of birds to neural assemblies and human societies. Yet, how such collectives acquire functional properties — such as joint agency or knowledge — that transcend those of their individual components remains an open question. Here, we combine active inference and information-theoretic analyses to explore how a minimal system of interacting agents can give rise to joint agency and collective knowledge. We model flocking dynamics using multiple active inference agents, each minimizing its own free energy while coupling reciprocally with its neighbors. We show that as agents self-organize, their interactions define higher-order statistical boundaries (Markov blankets) enclosing a “flock” that can be treated as an emergent agent with its own sensory, active, and internal states. When exposed to external perturbations (a “predator”), the flock exhibits faster, coordinated responses than individual agents, reflecting collective sensitivity to environmental change. Crucially, analyses of synergistic information reveal that the flock encodes information about the predator’s location that is not accessible to every individual bird, demonstrating implicit collective knowledge. Together, these results show how informational coupling among active inference agents can generate new levels of autonomy and inference, providing a framework for understanding the emergence of (implicit) collective knowledge and joint agency.
Inside the marketplace powering bespoke AI deepfakes of real women
Civitai—an online marketplace for buying and selling AI-generated content, backed by the venture capital firm Andreessen Horowitz—is letting users buy custom instruction files for generating


