arXiv:2510.19599v1 Announce Type: cross
Abstract: Vision-language models (VLMs) have recently shown remarkable zero-shot performance in medical image understanding, yet their grounding ability, the extent to which textual concepts align with visual evidence, remains underexplored. In the medical domain, however, reliable grounding is essential for interpretability and clinical adoption. In this work, we present the first systematic benchmark for evaluating cross-modal interpretability in chest X-rays across seven CLIP-style VLM variants. We generate visual explanations using cross-attention and similarity-based localization maps, and quantitatively assess their alignment with radiologist-annotated regions across multiple pathologies. Our analysis reveals that: (1) while all VLM variants demonstrate reasonable localization for large and well-defined pathologies, their performance substantially degrades for small or diffuse lesions; (2) models that are pretrained on chest X-ray-specific datasets exhibit improved alignment compared to those trained on general-domain data. (3) The overall recognition ability and grounding ability of the model are strongly correlated. These findings underscore that current VLMs, despite their strong recognition ability, still fall short in clinically reliable grounding, highlighting the need for targeted interpretability benchmarks before deployment in medical practice. XBench code is available at https://github.com/Roypic/Benchmarkingattention
The Hidden Power of Normalization: Exponential Capacity Control in Deep Neural Networks
arXiv:2511.00958v1 Announce Type: cross Abstract: Normalization methods are fundamental components of modern deep neural networks (DNNs). Empirically, they are known to stabilize optimization dynamics and

