• Home
  • Primary
  • Quantum Masked Autoencoders for Vision Learning

Quantum Masked Autoencoders for Vision Learning

arXiv:2511.17372v1 Announce Type: cross
Abstract: Classical autoencoders are widely used to learn features of input data. To improve the feature learning, classical masked autoencoders extend classical autoencoders to learn the features of the original input sample in the presence of masked-out data. While quantum autoencoders exist, there is no design and implementation of quantum masked autoencoders that can leverage the benefits of quantum computing and quantum autoencoders. In this paper, we propose quantum masked autoencoders (QMAEs) that can effectively learn missing features of a data sample within quantum states instead of classical embeddings. We showcase that our QMAE architecture can learn the masked features of an image and can reconstruct the masked input image with improved visual fidelity in MNIST images. Experimental evaluation highlights that QMAE can significantly outperform (12.86% on average) in classification accuracy compared to state-of-the-art quantum autoencoders in the presence of masks.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844