arXiv:2511.16680v1 Announce Type: cross
Abstract: Despite rapid advances in multilingual natural language processing (NLP), the Bantu language Shona remains under-served in terms of morphological analysis and language-aware tools. This paper presents Shona spaCy, an open-source, rule-based morphological pipeline for Shona built on the spaCy framework. The system combines a curated JSON lexicon with linguistically grounded rules to model noun-class prefixes (Mupanda 1-18), verbal subject concords, tense-aspect markers, ideophones, and clitics, integrating these into token-level annotations for lemma, part-of-speech, and morphological features. The toolkit is available via pip install shona-spacy, with source code at https://github.com/HappymoreMasoka/shona-spacy and a PyPI release at https://pypi.org/project/shona-spacy/0.1.4/. Evaluation on formal and informal Shona corpora yields 90% POS-tagging accuracy and 88% morphological-feature accuracy, while maintaining transparency in its linguistic decisions. By bridging descriptive grammar and computational implementation, Shona spaCy advances NLP accessibility and digital inclusion for Shona speakers and provides a template for morphological analysis tools for other under-resourced Bantu languages.
Sex and age estimation from cardiac signals captured via radar using data augmentation and deep learning: a privacy concern
IntroductionElectrocardiograms (ECGs) have long served as the standard method for cardiac monitoring. While ECGs are highly accurate and widely validated, they require direct skin contact,


