arXiv:2601.12913v3 Announce Type: replace
Abstract: This paper argues that interpretability research in Artificial Intelligence (AI) is fundamentally ill-posed as existing definitions of interpretability fail to describe how interpretability can be formally tested or designed for. We posit that actionable definitions of interpretability must be formulated in terms of *symmetries* that inform model design and lead to testable conditions. Under a probabilistic view, we hypothesise that four symmetries (inference equivariance, information invariance, concept-closure invariance, and structural invariance) suffice to (i) formalise interpretable models as a subclass of probabilistic models, (ii) yield a unified formulation of interpretable inference (e.g., alignment, interventions, and counterfactuals) as a form of Bayesian inversion, and (iii) provide a formal framework to verify compliance with safety standards and regulations.
Infectious disease burden and surveillance challenges in Jordan and Palestine: a systematic review and meta-analysis
BackgroundJordan and Palestine face public health challenges due to infectious diseases, with the added detrimental factors of long-term conflict, forced relocation, and lack of resources.


