• Home
  • Uncategorized
  • Adapting the Behavior of Reinforcement Learning Agents to Changing Action Spaces and Reward Functions

arXiv:2601.20714v1 Announce Type: cross
Abstract: Reinforcement Learning (RL) agents often struggle in real-world applications where environmental conditions are non-stationary, particularly when reward functions shift or the available action space expands. This paper introduces MORPHIN, a self-adaptive Q-learning framework that enables on-the-fly adaptation without full retraining. By integrating concept drift detection with dynamic adjustments to learning and exploration hyperparameters, MORPHIN adapts agents to changes in both the reward function and on-the-fly expansions of the agent’s action space, while preserving prior policy knowledge to prevent catastrophic forgetting. We validate our approach using a Gridworld benchmark and a traffic signal control simulation. The results demonstrate that MORPHIN achieves superior convergence speed and continuous adaptation compared to a standard Q-learning baseline, improving learning efficiency by up to 1.7x.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844