arXiv:2601.18381v1 Announce Type: new
Abstract: To facilitate the transformation of legacy finite difference implementations into the Devito environment, this study develops an integrated AI agent framework. Retrieval-Augmented Generation (RAG) and open-source Large Language Models are combined through multi-stage iterative workflows in the system’s hybrid LangGraph architecture. The agent constructs an extensive Devito knowledge graph through document parsing, structure-aware segmentation, extraction of entity relationships, and Leiden-based community detection. GraphRAG optimisation enhances query performance across semantic communities that include seismic wave simulation, computational fluid dynamics, and performance tuning libraries. A reverse engineering component derives three-level query strategies for RAG retrieval through static analysis of Fortran source code. To deliver precise contextual information for language model guidance, the multi-stage retrieval pipeline performs parallel searching, concept expansion, community-scale retrieval, and semantic similarity analysis. Code synthesis is governed by Pydantic-based constraints to guarantee structured outputs and reliability. A comprehensive validation framework integrates conventional static analysis with the G-Eval approach, covering execution correctness, structural soundness, mathematical consistency, and API compliance. The overall agent workflow is implemented on the LangGraph framework and adopts concurrent processing to support quality-based iterative refinement and state-aware dynamic routing. The principal contribution lies in the incorporation of feedback mechanisms motivated by reinforcement learning, enabling a transition from static code translation toward dynamic and adaptive analytical behavior.
Infectious disease burden and surveillance challenges in Jordan and Palestine: a systematic review and meta-analysis
BackgroundJordan and Palestine face public health challenges due to infectious diseases, with the added detrimental factors of long-term conflict, forced relocation, and lack of resources.


