arXiv:2509.23589v2 Announce Type: replace
Abstract: Diffusion-based planners have shown great promise for autonomous driving due to their ability to capture multi-modal driving behaviors. However, guiding these models effectively in reactive, closed-loop environments remains a significant challenge. Simple conditioning often fails to provide sufficient guidance in complex and dynamic driving scenarios. Recent work attempts to use typical expert driving behaviors (i.e., anchors) to guide diffusion models but relies on a truncated schedule, which introduces theoretical inconsistencies and can compromise performance. To address this, we introduce BridgeDrive, a novel anchor-guided diffusion bridge policy for closed-loop trajectory planning. Our approach provides a principled diffusion framework that effectively translates anchors into fine-grained trajectory plans, appropriately responding to varying traffic conditions. Our planner is compatible with efficient ODE solvers, a critical factor for real-time autonomous driving deployment. We achieve state-of-the-art performance on the Bench2Drive benchmark, improving the success rate by 7.72% over prior arts.
Mucin-type O-glycans regulate proteoglycan stability and chondrocyte maturation
O-glycosylation is a ubiquitous post-translational modification essential for protein stability, cell signaling, and tissue organization, yet how distinct O-glycan subclasses coordinate tissue development remains unclear.



