arXiv:2601.19793v1 Announce Type: new
Abstract: Graph-based Multi-Agent Systems (MAS) enable complex cyclic workflows but suffer from inefficient static model allocation, where deploying strong models uniformly wastes computation on trivial sub-tasks. We propose CASTER (Context-Aware Strategy for Task Efficient Routing), a lightweight router for dynamic model selection in graph-based MAS. CASTER employs a Dual-Signal Router that combines semantic embeddings with structural meta-features to estimate task difficulty. During training, the router self-optimizes through a Cold Start to Iterative Evolution paradigm, learning from its own routing failures via on-policy negative feedback. Experiments using LLM-as-a-Judge evaluation across Software Engineering, Data Analysis, Scientific Discovery, and Cybersecurity demonstrate that CASTER reduces inference cost by up to 72.4% compared to strong-model baselines while matching their success rates, and consistently outperforms both heuristic routing and FrugalGPT across all domains.
Infectious disease burden and surveillance challenges in Jordan and Palestine: a systematic review and meta-analysis
BackgroundJordan and Palestine face public health challenges due to infectious diseases, with the added detrimental factors of long-term conflict, forced relocation, and lack of resources.




