arXiv:2601.20518v1 Announce Type: cross
Abstract: Topological deep learning has emerged for modeling higher-order relational structures beyond pairwise interactions that standard graph neural networks fail to capture. Although combinatorial complexes offer a unified topological framework, most existing topological deep learning methods rely on local message passing via attention mechanisms, which incur quadratic complexity and remain low-dimensional, limiting scalability and rank-aware information aggregation in higher-order complexes.We propose Combinatorial Complex Mamba (CCMamba), the first unified mamba-based neural framework for learning on combinatorial complexes. CCMamba reformulates message passing as a selective state-space modeling problem by organizing multi-rank incidence relations into structured sequences processed by rank-aware state-space models. This enables adaptive, directional, and long range information propagation in linear time without self attention. We further establish the theoretical analysis that the expressive power upper-bound of CCMamba message passing is the 1-Weisfeiler-Lehman test. Experiments on graph, hypergraph, and simplicial benchmarks demonstrate that CCMamba consistently outperforms existing methods while exhibiting improved scalability and robustness to depth.
Infectious disease burden and surveillance challenges in Jordan and Palestine: a systematic review and meta-analysis
BackgroundJordan and Palestine face public health challenges due to infectious diseases, with the added detrimental factors of long-term conflict, forced relocation, and lack of resources.


