• Home
  • Uncategorized
  • Component-Level Lesioning of Language Models Reveals Clinically Aligned Aphasia Phenotypes

arXiv:2601.19723v1 Announce Type: cross
Abstract: Large language models (LLMs) increasingly exhibit human-like linguistic behaviors and internal representations that they could serve as computational simulators of language cognition. We ask whether LLMs can be systematically manipulated to reproduce language-production impairments characteristic of aphasia following focal brain lesions. Such models could provide scalable proxies for testing rehabilitation hypotheses, and offer a controlled framework for probing the functional organization of language. We introduce a clinically grounded, component-level framework that simulates aphasia by selectively perturbing functional components in LLMs, and apply it to both modular Mixture-of-Experts models and dense Transformers using a unified intervention interface. Our pipeline (i) identifies subtype-linked components for Broca’s and Wernicke’s aphasia, (ii) interprets these components with linguistic probing tasks, and (iii) induces graded impairments by progressively perturbing the top-k subtype-linked components, evaluating outcomes with Western Aphasia Battery (WAB) subtests summarized by Aphasia Quotient (AQ). Across architectures and lesioning strategies, subtype-targeted perturbations yield more systematic, aphasia-like regressions than size-matched random perturbations, and MoE modularity supports more localized and interpretable phenotype-to-component mappings. These findings suggest that modular LLMs, combined with clinically informed component perturbations, provide a promising platform for simulating aphasic language production and studying how distinct language functions degrade under targeted disruptions.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844