arXiv:2512.19004v1 Announce Type: cross
Abstract: Diffusion Large Language Models (DLLMs) enable fully parallel token decoding but often remain impractical at inference time due to the many denoising iterations required to refine an information-free, fully masked initialization into coherent text. Most existing acceleration methods focus on traversing this generative trajectory more efficiently via improved solvers or sampling strategies. We advance a complementary perspective: shorten the trajectory itself by starting closer to the target distribution through context-aware initialization.
We propose a training-free interface that injects prompt-conditioned priors from a lightweight auxiliary model into the diffusion initialization, and instantiate it with two mechanisms: discrete token injection and representation-level embedding interpolation. Because injected priors can be imperfect and unmask-only decoding can over-commit early, we also introduce a simple confidence-based remasking mechanism as a form of prior skepticism. Preliminary evidence on GSM8K suggests that context-aware initialization can substantially reduce denoising iterations (about 35% fewer function evaluations in our setting), while also exposing a key open challenge: naive warm-starting can degrade final accuracy relative to strong diffusion baselines. We use these findings to motivate a research agenda around calibration, revision mechanisms, and representation alignment for reliable warm-started diffusion decoding.
Just-In-Time Adaptive Interventions for Weight Management Among Adults With Excess Body Weight: Scoping Review
Background: Just-in-time adaptive interventions (JITAIs) use real-time monitoring to deliver personalized support at optimal moments, demonstrating potential for improving lifestyle behaviors in weight management. Objective:




