• Home
  • Uncategorized
  • Coupled Variational Reinforcement Learning for Language Model General Reasoning

arXiv:2512.12576v2 Announce Type: replace-cross
Abstract: While reinforcement learning has achieved impressive progress in language model reasoning, it is constrained by the requirement for verifiable rewards. Recent verifier-free RL methods address this limitation by utilizing the probabilities that LLMs generate reference answers as reward signals. However, these approaches typically sample reasoning traces conditioned only on the question. This design decouples reasoning-trace sampling from answer information, leading to inefficient exploration and incoherence between traces and final answers. In this paper, we propose textitbCoupled bVariational bReinforcement bLearning (CoVRL), which bridges variational inference and reinforcement learning by coupling prior and posterior distributions through a hybrid sampling strategy. By constructing and optimizing a composite distribution that integrates these two distributions, CoVRL enables efficient exploration while preserving strong thought-answer coherence. Extensive experiments on mathematical and general reasoning benchmarks show that CoVRL improves performance by 12.4% over the base model and achieves an additional 2.3% improvement over state-of-the-art verifier-free RL baselines, providing a principled framework for enhancing the general reasoning capabilities of language models.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844