arXiv:2512.01317v2 Announce Type: replace-cross
Abstract: Measurement-induced entanglement (MIE) captures how local measurements generate long-range quantum correlations and drive dynamical phase transitions in many-body systems. Yet estimating MIE experimentally remains challenging: direct evaluation requires extensive post-selection over measurement outcomes, raising the question of whether MIE is accessible with only polynomial resources. We address this challenge by reframing MIE detection as a data-driven learning problem that assumes no prior knowledge of state preparation. Using measurement records alone, we train a neural network in a self-supervised manner to predict the uncertainty metric for MIE–the gap between upper and lower bounds of the average post-measurement bipartite entanglement. Applied to random circuits with one-dimensional all-to-all connectivity and two-dimensional nearest-neighbor coupling, our method reveals a learnability transition with increasing circuit depth: below a threshold, the uncertainty is small and decreases with polynomial measurement data and model parameters, while above it the uncertainty remains large despite increasing resources. We further verify this transition experimentally on current noisy quantum devices, demonstrating its robustness to realistic noise. These results highlight the power of data-driven approaches for learning MIE and delineate the practical limits of its classical learnability.
Randomized controlled trial to evaluate an app-based multimodal digital intervention for people with type 2 diabetes in comparison to a placebo app
IntroductionThis multi-center, parallel-group randomized controlled trial evaluated the app-based intervention mebix, developed by Vision2b GmbH in Germany, for people with type 2 diabetes compared to




