• Home
  • Uncategorized
  • DecHW: Heterogeneous Decentralized Federated Learning Exploiting Second-Order Information

arXiv:2601.19938v1 Announce Type: cross
Abstract: Decentralized Federated Learning (DFL) is a serverless collaborative machine learning paradigm where devices collaborate directly with neighbouring devices to exchange model information for learning a generalized model. However, variations in individual experiences and different levels of device interactions lead to data and model initialization heterogeneities across devices. Such heterogeneities leave variations in local model parameters across devices that leads to slower convergence. This paper tackles the data and model heterogeneity by explicitly addressing the parameter level varying evidential credence across local models. A novel aggregation approach is introduced that captures these parameter variations in local models and performs robust aggregation of neighbourhood local updates. Specifically, consensus weights are generated via approximation of second-order information of local models on their local datasets. These weights are utilized to scale neighbourhood updates before aggregating them into global neighbourhood representation. In extensive experiments with computer vision tasks, the proposed approach shows strong generalizability of local models at reduced communication costs.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844