• Home
  • Uncategorized
  • Ev-Trust: A Strategy Equilibrium Trust Mechanism for Evolutionary Games in LLM-Based Multi-Agent Services

Ev-Trust: A Strategy Equilibrium Trust Mechanism for Evolutionary Games in LLM-Based Multi-Agent Services

arXiv:2512.16167v1 Announce Type: cross
Abstract: The rapid evolution of the Web toward an agent-centric paradigm, driven by large language models (LLMs), has enabled autonomous agents to reason, plan, and interact in complex decentralized environments. However, the openness and heterogeneity of LLM-based multi-agent systems also amplify the risks of deception, fraud, and misinformation, posing severe challenges to trust establishment and system robustness. To address this issue, we propose Ev-Trust, a strategy-equilibrium trust mechanism grounded in evolutionary game theory. This mechanism integrates direct trust, indirect trust, and expected revenue into a dynamic feedback structure that guides agents’ behavioral evolution toward equilibria. Within a decentralized “Request-Response-Payment-Evaluation” service framework, Ev-Trust enables agents to adaptively adjust strategies, naturally excluding malicious participants while reinforcing high-quality collaboration. Furthermore, our theoretical derivation based on replicator dynamics equations proves the existence and stability of local evolutionary equilibria. Experimental results indicate that our approach effectively reflects agent trustworthiness in LLM-driven open service interaction scenarios, reduces malicious strategies, and increases collective revenue. We hope Ev-Trust can provide a new perspective on trust modeling for the agentic service web in group evolutionary game scenarios.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844