arXiv:2512.06306v1 Announce Type: cross
Abstract: Human pose estimation focuses on predicting body keypoints to analyze human motion. Event cameras provide high temporal resolution and low latency, enabling robust estimation under challenging conditions. However, most existing methods convert event streams into dense event frames, which adds extra computation and sacrifices the high temporal resolution of the event signal. In this work, we aim to exploit the spatiotemporal properties of event streams based on point cloud-based framework, designed to enhance human pose estimation performance. We design Event Temporal Slicing Convolution module to capture short-term dependencies across event slices, and combine it with Event Slice Sequencing module for structured temporal modeling. We also apply edge enhancement in point cloud-based event representation to enhance spatial edge information under sparse event conditions to further improve performance. Experiments on the DHP19 dataset show our proposed method consistently improves performance across three representative point cloud backbones: PointNet, DGCNN, and Point Transformer.
CUDA-L2: Surpassing cuBLAS Performance for Matrix Multiplication through Reinforcement Learning
arXiv:2512.02551v2 Announce Type: replace-cross Abstract: In this paper, we propose CUDA-L2, a system that combines large language models (LLMs) and reinforcement learning (RL) to automatically


