arXiv:2503.11006v2 Announce Type: replace-cross
Abstract: Vision-and-Language Navigation (VLN) requires an embodied agent to traverse complex environments by following natural language instructions, demanding accurate alignment between visual observations and linguistic guidance. Despite recent progress, existing methods typically encode visual and directional cues in a coupled manner, and process instructions without explicitly extracting navigation-critical semantics, which often leads to imprecise spatial reasoning and suboptimal cross-modal alignment. To address these challenges, we propose a fine-grained instruction-guided graph reasoning framework (OIKG) that enhances both spatial representation and instruction understanding during navigation. Specifically, an observation-graph interaction mechanism is introduced to disentangle angular and visual cues while strengthening directed edge representations through geometric embedding, enabling more reliable spatial reasoning within the navigation graph. In addition, a fine-grained instruction guidance module is designed to explicitly extract and leverage location-specific and object-centric information from language instructions, facilitating more precise cross-modal alignment between linguistic semantics and navigable trajectories. By jointly integrating structured graph reasoning with instruction-critical semantic cues, the proposed approach significantly improves the agent’s ability to follow complex navigation instructions. Extensive experiments on the R2R and RxR benchmarks demonstrate that our method consistently achieves state-of-the-art performance across multiple evaluation metrics, validating the effectiveness of fine-grained instruction-guided graph reasoning for vision-and-language navigation.
Learning Evolving Latent Strategies for Multi-Agent Language Systems without Model Fine-Tuning
arXiv:2512.20629v1 Announce Type: cross Abstract: This study proposes a multi-agent language framework that enables continual strategy evolution without fine-tuning the language model’s parameters. The core




