arXiv:2511.17582v3 Announce Type: replace-cross
Abstract: Parameter-efficient fine-tuning (PEFT) methods, such as LoRA, DoRA, and HiRA, enable lightweight adaptation of large pre-trained models via low-rank updates. However, existing PEFT approaches apply static, input-agnostic updates to all tokens, disregarding the varying importance and difficulty of different inputs. This uniform treatment can lead to overfitting on trivial content or under-adaptation on more informative regions, especially in autoregressive settings with distinct prefill and decoding dynamics. In this paper, we propose GateRA, a unified framework that introduces token-aware modulation to dynamically adjust the strength of PEFT updates. By incorporating adaptive gating into standard PEFT branches, GateRA enables selective, token-level adaptation, preserving pre-trained knowledge for well-modeled inputs while focusing capacity on challenging cases. Empirical visualizations reveal phase-sensitive behaviors, where GateRA automatically suppresses updates for redundant prefill tokens while emphasizing adaptation during decoding. To promote confident and efficient modulation, we further introduce an entropy-based regularization that encourages near-binary gating decisions. This regularization prevents diffuse update patterns and leads to interpretable, sparse adaptation without hard thresholding. Finally, we present a theoretical analysis showing that GateRA induces a soft gradient-masking effect over the PEFT path, enabling continuous and differentiable control over adaptation. Experiments on multiple commonsense reasoning benchmarks demonstrate that GateRA consistently outperforms or matches prior PEFT methods.
Just-In-Time Adaptive Interventions for Weight Management Among Adults With Excess Body Weight: Scoping Review
Background: Just-in-time adaptive interventions (JITAIs) use real-time monitoring to deliver personalized support at optimal moments, demonstrating potential for improving lifestyle behaviors in weight management. Objective:



