• Home
  • Uncategorized
  • HARBOR: Holistic Adaptive Risk assessment model for BehaviORal healthcare

HARBOR: Holistic Adaptive Risk assessment model for BehaviORal healthcare

arXiv:2512.18829v1 Announce Type: new
Abstract: Behavioral healthcare risk assessment remains a challenging problem due to the highly multimodal nature of patient data and the temporal dynamics of mood and affective disorders. While large language models (LLMs) have demonstrated strong reasoning capabilities, their effectiveness in structured clinical risk scoring remains unclear. In this work, we introduce HARBOR, a behavioral health aware language model designed to predict a discrete mood and risk score, termed the Harbor Risk Score (HRS), on an integer scale from -3 (severe depression) to +3 (mania). We also release PEARL, a longitudinal behavioral healthcare dataset spanning four years of monthly observations from three patients, containing physiological, behavioral, and self reported mental health signals. We benchmark traditional machine learning models, proprietary LLMs, and HARBOR across multiple evaluation settings and ablations. Our results show that HARBOR outperforms classical baselines and off the shelf LLMs, achieving 69 percent accuracy compared to 54 percent for logistic regression and 29 percent for the strongest proprietary LLM baseline.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844