arXiv:2510.25262v2 Announce Type: replace-cross
Abstract: Normalization is fundamental to deep learning, but existing approaches such as BatchNorm, LayerNorm, and RMSNorm are variance-centric by enforcing zero mean and unit variance, stabilizing training without controlling how representations capture task-relevant information. We propose IB-Inspired Normalization (IBNorm), a simple yet powerful family of methods grounded in the Information Bottleneck principle. IBNorm introduces bounded compression operations that encourage embeddings to preserve predictive information while suppressing nuisance variability, yielding more informative representations while retaining the stability and compatibility of standard normalization. Theoretically, we prove that IBNorm achieves a higher IB value and tighter generalization bounds than variance-centric methods. Empirically, IBNorm consistently outperforms BatchNorm, LayerNorm, and RMSNorm across large-scale language models (LLaMA, GPT-2) and vision models (ResNet, ViT), with mutual information analysis confirming superior information bottleneck behavior. Code will be released publicly.
Infectious disease burden and surveillance challenges in Jordan and Palestine: a systematic review and meta-analysis
BackgroundJordan and Palestine face public health challenges due to infectious diseases, with the added detrimental factors of long-term conflict, forced relocation, and lack of resources.



