arXiv:2508.10021v4 Announce Type: replace-cross
Abstract: Learning clients embeddings from sequences of their historic communications is central to financial applications. While large language models (LLMs) offer general world knowledge, their direct use on long event sequences is computationally expensive and impractical in real-world pipelines. In this paper, we propose LATTE, a contrastive learning framework that aligns raw event embeddings with semantic embeddings from frozen LLMs. Behavioral features are summarized into short prompts, embedded by the LLM, and used as supervision via contrastive loss. The proposed approach significantly reduces inference cost and input size compared to conventional processing of complete sequence by LLM. We experimentally show that our method outperforms state-of-the-art techniques for learning event sequence representations on real-world financial datasets while remaining deployable in latency-sensitive environments.
Magnetoencephalography reveals adaptive neural reorganization maintaining lexical-semantic proficiency in healthy aging
Although semantic cognition remains behaviorally stable with age, neuroimaging studies report age-related alterations in response to semantic context. We aimed to reconcile these inconsistent findings




