arXiv:2508.13962v2 Announce Type: replace-cross
Abstract: As Artificial Intelligence (AI) becomes increasingly integrated into daily life, there is a growing need to equip the next generation with the ability to apply, interact with, evaluate, and collaborate with AI systems responsibly. Prior research highlights the urgent demand from K-12 educators to teach students the ethical and effective use of AI for learning. To address this need, we designed an Large-Language Model (LLM)-based module to teach prompting literacy. This includes scenario-based deliberate practice activities with direct interaction with intelligent LLM agents, aiming to foster secondary school students’ responsible engagement with AI chatbots. We conducted two iterations of classroom deployment in 11 authentic secondary education classrooms, and evaluated 1) AI-based auto-grader’s capability; 2) students’ prompting performance and confidence changes towards using AI for learning; and 3) the quality of learning and assessment materials. Results indicated that the AI-based auto-grader could grade student-written prompts with satisfactory quality. In addition, the instructional materials supported students in improving their prompting skills through practice and led to positive shifts in their perceptions of using AI for learning. Furthermore, data from Study 1 informed assessment revisions in Study 2. Analyses of item difficulty and discrimination in Study 2 showed that True/False and open-ended questions could measure prompting literacy more effectively than multiple-choice questions for our target learners. These promising outcomes highlight the potential for broader deployment and highlight the need for broader studies to assess learning effectiveness and assessment design.
CUDA-L2: Surpassing cuBLAS Performance for Matrix Multiplication through Reinforcement Learning
arXiv:2512.02551v2 Announce Type: replace-cross Abstract: In this paper, we propose CUDA-L2, a system that combines large language models (LLMs) and reinforcement learning (RL) to automatically


