arXiv:2506.11266v2 Announce Type: replace-cross
Abstract: Large language models (LLMs) increasingly rely on external tools and APIs to execute complex tasks specified in natural language. Evaluating such tool calling capabilities in realistic enterprise settings is challenging: APIs are often proprietary, heterogeneous, and difficult to share, limiting reproducible benchmarks. To address this, we introduce Live API Bench, a comprehensive benchmark constructed by transforming NL2SQL datasets into interactive API environments. Our pipeline converts SQL queries from BIRD SQL into executable API sequences across three formulations SLOT, SEL, and REST covering minimal general purpose operations, domain specific multi step tasks, and function oriented RESTful interactions, respectively. The benchmark spans 11 databases with over 2,500 invocable tools, paired with human authored queries, ground truth API sequences, and verified final answers. Live API Bench enables systematic evaluation of core challenges in tool use, including error handling, sequential reasoning, parameter generation, response parsing, and robustness across diverse domains. We evaluate 10 LLMs and 4 ReACT agents, observing low task completion rates (7 to 47pct), which improve modestly to 50pct under interactive agent settings, highlighting substantial scope for improving LLM tool calling performance. We release all code and data associated with this paper.
Infectious disease burden and surveillance challenges in Jordan and Palestine: a systematic review and meta-analysis
BackgroundJordan and Palestine face public health challenges due to infectious diseases, with the added detrimental factors of long-term conflict, forced relocation, and lack of resources.

