• Home
  • Uncategorized
  • Mechanism-Based Intelligence (MBI): Differentiable Incentives for Rational Coordination and Guaranteed Alignment in Multi-Agent Systems

Mechanism-Based Intelligence (MBI): Differentiable Incentives for Rational Coordination and Guaranteed Alignment in Multi-Agent Systems

arXiv:2512.20688v1 Announce Type: cross
Abstract: Autonomous multi-agent systems are fundamentally fragile: they struggle to solve the Hayekian Information problem (eliciting dispersed private knowledge) and the Hurwiczian Incentive problem (aligning local actions with global objectives), making coordination computationally intractable. I introduce Mechanism-Based Intelligence (MBI), a paradigm that reconceptualizes intelligence as emergent from the coordination of multiple “brains”, rather than a single one. At its core, the Differentiable Price Mechanism (DPM) computes the exact loss gradient $$ mathbfG_i = – fracpartial mathcalLpartial mathbfx_i $$ as a dynamic, VCG-equivalent incentive signal, guaranteeing Dominant Strategy Incentive Compatibility (DSIC) and convergence to the global optimum. A Bayesian extension ensures incentive compatibility under asymmetric information (BIC). The framework scales linearly ($mathcalO(N)$) with the number of agents, bypassing the combinatorial complexity of Dec-POMDPs and is empirically 50x faster than Model-Free Reinforcement Learning. By structurally aligning agent self-interest with collective objectives, it provides a provably efficient, auditable and generalizable approach to coordinated, trustworthy and scalable multi-agent intelligence grounded in economic principles.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844