• Home
  • Uncategorized
  • Memory-Efficient Acceleration of Block Low-Rank Foundation Models on Resource Constrained GPUs

Memory-Efficient Acceleration of Block Low-Rank Foundation Models on Resource Constrained GPUs

arXiv:2512.20861v1 Announce Type: cross
Abstract: Recent advances in transformer-based foundation models have made them the default choice for many tasks, but their rapidly growing size makes fitting a full model on a single GPU increasingly difficult and their computational cost prohibitive. Block low-rank (BLR) compression techniques address this challenge by learning compact representations of weight matrices. While traditional low-rank (LR) methods often incur sharp accuracy drops, BLR approaches such as Monarch and BLAST can better capture the underlying structure, thus preserving accuracy while reducing computations and memory footprints. In this work, we use roofline analysis to show that, although BLR methods achieve theoretical savings and practical speedups for single-token inference, multi-token inference often becomes memory-bound in practice, increasing latency despite compiler-level optimizations in PyTorch. To address this, we introduce custom Triton kernels with partial fusion and memory layout optimizations for both Monarch and BLAST. On memory-constrained NVIDIA GPUs such as Jetson Orin Nano and A40, our kernels deliver up to $3.76times$ speedups and $3times$ model size compression over PyTorch dense baselines using CUDA backend and compiler-level optimizations, while supporting various models including Llama-7/1B, GPT2-S, DiT-XL/2, and ViT-B. Our code is available at https://github.com/pabillam/mem-efficient-blr .

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844