• Home
  • Uncategorized
  • MemoryRewardBench: Benchmarking Reward Models for Long-Term Memory Management in Large Language Models

arXiv:2601.11969v2 Announce Type: replace-cross
Abstract: Existing works increasingly adopt memory-centric mechanisms to process long contexts in a segment manner, and effective memory management is one of the key capabilities that enables large language models to effectively propagate information across the entire sequence. Therefore, leveraging reward models (RMs) to automatically and reliably evaluate memory quality is critical. In this work, we introduce MemoryRewardBench, the first benchmark to systematically study the ability of RMs to evaluate long-term memory management processes. MemoryRewardBench covers both long-context comprehension and long-form generation tasks, featuring 10 distinct settings with different memory management patterns, with context length ranging from 8K to 128K tokens. Evaluations on 13 cutting-edge RMs indicate a diminishing performance gap between open-source and proprietary models, with newer-generation models consistently outperforming their predecessors regardless of parameter count. We further expose the capabilities and fundamental limitations of current RMs in evaluating LLM memory management across diverse settings.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844